
Distributed Subgraph Matching on
Timely Dataflow

Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai,
Ran Wang, Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang,

Ying Zhang, Zhengping Qian, Jingren Zhou

Outline
● Introduction

● Literature Survey

● Experiment Results & Observations

● A Practical Guide

Introduction

Subgraph Matching
Given a pattern graph P and a data graph G (both are undirected, unlabelled
simple graph), the problem is to find all subgraph instances (matches) g’ in G,
that are isomorphic to P.

v0

v1 v2

v3 u0

u1
u2

u3

u4

u5

P G

Subgraph Matching
Given a pattern graph P and a data graph G (both are undirected, unlabelled
simple graph), the problem is to find all subgraph instances (matches) g’ in G,
that are isomorphic to P.

v0 v1 v2 v3

u0 u1 u2 u5
v0

v1 v2

v3 u0

u1
u2

u3

u4

u5

P G

Subgraph Matching

u0

u1
u2

u3

u4

u5

P G

v0 v1 v2 v3

u0 u1 u2 u5

u1 u2 u3 u5

v0

v1 v2

v3

Given a pattern graph P and a data graph G (both are undirected, unlabelled
simple graph), the problem is to find all subgraph instances (matches) g’ in G,
that are isomorphic to P.

Subgraph Matching

u0

u1
u2

u3

u4

u5

P G

v0 v1 v2 v3

u0 u1 u2 u5

u1 u2 u3 u5

u2 u3 u4 u5

v0

v1 v2

v3

Given a pattern graph P and a data graph G (both are undirected, unlabelled
simple graph), the problem is to find all subgraph instances (matches) g’ in G,
that are isomorphic to P.

Distributed Subgraph Matching
● Distributed Solutions for performance and scalability

○ Computational Intractability: Subgraph Isomorphism is NPC

○ Graphs are now easily in billion-scale

● Join-based Algorithms
○ Subgraph Matching can be naturally expressed using joins

○ Join operation can be easily distributed

○ Many systems natively support join operations

A Thriving Literature

What algorithm performs the best?
● Every new paper claims better performance. But?

○ Different languages based on different systems (system cost ignored)
○ Hardcoded optimizations for each query
○ Existing implementations intertwine Strategies and Optimizations

What algorithm performs the best?
Algorithm Strategy System/Lang Optimizations

StarJoin [1] BinaryJoin Trinity Memory / C++ None

PSgL [2] BinaryJoin/Others Giraph / Java None

TwinTwigJoin [3] BinaryJoin Hadoop / Java Compression

CliqueJoin [4] BinaryJoin Hadoop / Java Triangle Indexing, Compression

MultiwayJoin [5] Shares HypherCube Myria / Java N / A

BiGJoin [6] WOptJoin Timely / Rust Batching, specific Triangle Indexing

CrystalJoin [7] Others Hadoop / Java Compression

Our Contributions

A practical guide

A practical guide for
distributed subgraph
matching based on
empirical analysis
covering the
perspectives of join
strategies,optimizations
and join plans.

In-depth Experiments

A complete variations of
data graphs, query
graphs, strategies and
optimizations

All Optimizations

Three general-purpose
optimizations -
Batching, TrIndexing
and Compression - to
apply to all strategies
while possible

A Common System

A benchmarking
platform based on
Timely dataflow system
for distributed subgraph
matching.

Timely Dataflow System
● A general-purpose data-parallel distributed dataflow system [10]
● Computation is abstracted as dataflow graph

○ DAG, but allowing loops in the loop context
○ Operators are vertices that define computing logics
○ Data flows are directed edges that chain operators

● Reasons of using Timely dataflow
○ Small system cost [11]: the impact of system can be reduced to minimum
○ Low-level primitive operators: flexible enough to implement all benchmarking algorithms

Literature Survey

Categorizing by Strategies

BinaryJoin Strategy
● Divide the pattern graph into a set of join units { p1, p2, …, pk }
● Process k-1 binary joins following specific join order

● We prove that CliqueJoin is worst-case optimal by showing that it can be
expressed as GenericJoin proposed by Ngo et al. [8]

StarJoin Algorithm

StarJoin

Round 1

Round 2

Round 3

Round 4

TwinTwigJoin Algorithm

StarJoin TwinTwigJoin

Round 1

Round 2

Round 3

Round 4

CliqueJoin Algorithm

StarJoin TwinTwigJoin CliqueJoin

Round 1

Round 2

Round 3

Round 4

WOptJoin
● BinaryJoin: “growing by graphs (i.e. join units)”
● WOptJoin: “growing by vertices” [6]

○ Given a vertex order {v1, v2, …, vn}
○ Start by matching v1, then {v1, v2} and so on until constructing the final results
○ BiGJoin follows this strategy, and is implemented on Timely dataflow

WOptJoin
● BinaryJoin: “growing by graphs (join units)”
● WOptJoin: “growing by vertices” [6]

○ Given a vertex order {v1, v2, …, vn}
○ Start by matching v1, then {v1, v2} and so on until constructing the final results
○ BiGJoin follows this strategy, and is implemented on Timely dataflow

BiGJoin Algorithm
● Based on Ngo’s worst-case optimal join algorithm [8]
● Concepts:

○ Prefix: the current partial results
○ Prefix*: the projection of Prefix on the vertices that are connecting current vertex in the pattern graph

● Three operators on Timely Dataflow
○ Count: Count # neighbors of each vertex in the prefix*
○ Propose: Attach the neighbors that are the smallest among the prefix*’s vertices
○ Intersect: Process set intersection among the neighbors of all associated vertices

BiGJoin Algorithm

v1 v3

u1 u2

u2 u3

...

Prefix

Count:

Propose:

Intersect:

Next Prefix:

Prefix = Prefix*
as v4 connecting both v1 and v3

// count # neighbors

// Propose on the one with smallest number of neighbors

// Intersect with the other vertices’ neighbors

// Flatmap to get the next partial results w.r.t Prefix

Shares of Hypercube
● Given a pattern graph of n vertices, the searching space forms an

n-dimensional hypercube
○

● The idea of sharing
○ Divide V into b shares , where
○ The machine indiced by where , handles of the share of

● MultiwayJoin Algorithm (details in the paper)

Optimizations
● Three general-purpose optimizations

○ Batching
○ Triangle Indexing
○ Compression (Factorization)

● Methodologies
○ We apply all optimizations to both BinaryJoin and WOptJoin strategies
○ Focus on strategy-level comparison in order to see what cause the performance gains,

strategies or optimizations
○ Hand-written optimizations are excluded

Details of Compression
● Originally proposed by Qiao et al. [7]
● Intuition

○ Subgraph enumeration can generate enormous (intermediate) results
○ Some vertices can be compressed as they are not needed in future computation

■ Heuristics by [7]: the vertices that do not belong to the minimum vertex cover (MVC)

Details of Compression
● Originally proposed by Qiao et al. [7]
● Intuition

○ Subgraph enumeration can generate enormous (intermediate) results
○ Some vertices can be compressed as they are not needed in future computation

■ Heuristics by [7]: the vertices that do not belong to the minimum vertex cover (MVC)

v0

v1 v2

v3

Vertices to compress

Vertices in MVC

Details of Compression
● Originally proposed by Qiao et al. [7]
● Intuition

○ Subgraph enumeration can generate enormous (intermediate) results
○ Some vertices can be compressed as they are not needed in future computation

■ Heuristics by [7]: the vertices that do not belong to the minimum vertex cover (MVC)

v0

v1 v2

v3

Vertices to compress

Vertices in MVC
Decompose into results

Experiment Results & Observations

Experiment Settings
● Local Cluster: 10 machines connected via one 10GBps switch and one

1GBps switch. Each machine has 4 cores and 64GB memory
● Metrics

○ T: The slowest worker’s wall clock time.
■ 3 hours maximum, OT if running out of time
■ Tp, computation time: timing all computation-related functions, and take the slowest

among the workers
■ Tc, communication time: Tc = T - Tp

Effects of Optimizations

O
O
M

BinaryJoin WOptJoin

LJ dataset: 4.85M vertices, 43.37M edges

Observations
● Batching

○ Batching greatly reduces memory consumption, but barely affects performance

● Triangle Indexing
○ By average it takes 5 times more storage to index triangles on the studied datasets
○ It has critical impact for BinaryJoin
○ It is effective for WOptJoin when the network is slow (1GBps), but less so when it is fast

● Compression
○ Compression may introduce more cost than gains on very-sparse graphs like road

network

● All optimizations are applied for BinarayJoin and WOptJoin in the following

Challenging Queries

USRoad Google

Google dataset: 0.86M vertices, 4.32M edgesUSRoad dataset: 23.95M vertices, 28.85M edges

Observations
● The cost-based “optimal” join plan given by CliqueJoin [4] does not always

render the best performance

“Optimal” plan Alternative plan with
better performance

○ e.g., “Tailed triangle” (TR) vs “House” (H)
○ In theory, TR has lower estimated cost

[4], and lower worst-case bound [8] than
H

○ In practice, TR is as costly as H, and
joining two TRs in the “optimal” plan
makes it worse

Observations
● The heuristics of Crystaljoin

○ MVC-first + compress the remaining
○ It guarantees the best compression [7], but prioritizing computing MVC can be costly
○ e.g.

■ Note that we use connected “MVC” [9] instead of actual MVC
■ The “MVC”-first plan is very expensive as “MVC” is a costly 5-path

○ When it produces strictly larger compression

Observations
● The case that Crystaljoin indeed performs better

○ When it produces strictly larger compression
○ e.g.

■ Crystaljoin’s plan now compresses three vertices
■ BiGJoin (when applying compression), can only compress two vertices

CrystalJoinBiGJoin

All-around Comparisons
● 6 Queries

○

● 5 Datasets
○ Varieties of types: Web Graph, social networks and road networks
○ Varieties of sizes: 12M edges ~ 1806M edges
○ Varieties of densities (avg degree): 4 ~ 218

● 4 Strategies
○ BinaryJoin, WOptJoin, Shares of HyperCube (SHRCube), FullRep

All-around Comparisons Tc: shadowed fillings of the bars

Tp: white fillings of the bars

Observations
● FullRep typically outperforms the other strategies
● Computation time Tp dominates in most cases

○ Observed in the 10Gbps network
○ Communication time dominates in the slower network (1Gbps)
○ The distributed subgraph matching tends to be computation-intensive

A Practical Guide

Q & A

Working on open-sourcing, bins available for verifying the results:

References
1. Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on billion node graphs. PVLDB, 5(9), 2012.
2. Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel subgraph listing in a large-scale graph. In SIGMOD'14, pages

625-636.
3. L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumeration in mapreduce. PVLDB, 8(10), 2015.
4. L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang. Scalable distributed subgraph enumeration. PVLDB, 10(3), 2016.
5. F. N. Afrati, D. Fotakis, and J. D. Ullman. Enumerating subgraph instances using map-reduce. In Proc. of ICDE, 2013.
6. K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar. Distributed evaluation of subgraph queries using worst-case optimal

low-memory dataflows. PVLDB, 11(6), 2018.
7. M. Qiao, H. Zhang, and H. Cheng. Subgraph matching: On compression and computation. PVLDB, 11(2), 2017.
8. H. Q. Ngo, E. Porat, C. Re, and A. Rudra. Worst-case optimal join algorithms. J. ACM, 65(3), 2018.
9. H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H. Jarrah. Dualsim: Parallel subgraph enumeration in a

massive graph on a single machine. SIGMOD '16, pages 1231{1245, 2016.
10. D.G. Murray, F.McSherry, R. Isaacs, M.Isard, P.Barham, and M.Abadi, Naiad: A Timely Dataflow System. SOSP 13.
11. F.McSherry, M.Isard, D.G.Murray, Scalability! But at what COST? HotOS 2015.

