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Introduction



Subgraph Matching
Given a pattern graph P and a data graph G (both are undirected, unlabelled 
simple graph), the problem is to find all subgraph instances (matches) g’ in G, 
that are isomorphic to P.
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Distributed Subgraph Matching
● Distributed Solutions for performance and scalability

○ Computational Intractability: Subgraph Isomorphism is NPC

○ Graphs are now easily in billion-scale

● Join-based Algorithms
○ Subgraph Matching can be naturally expressed using joins

○ Join operation can be easily distributed

○ Many systems natively support join operations



A Thriving Literature



What algorithm performs the best?
● Every new paper claims better performance. But?

○ Different languages based on different systems (system cost ignored)
○ Hardcoded optimizations for each query
○ Existing implementations intertwine Strategies and Optimizations



What algorithm performs the best?
Algorithm Strategy System/Lang Optimizations

StarJoin [1] BinaryJoin Trinity Memory / C++ None

PSgL [2] BinaryJoin/Others Giraph / Java None

TwinTwigJoin [3] BinaryJoin Hadoop / Java Compression

CliqueJoin [4] BinaryJoin Hadoop / Java Triangle Indexing, Compression

MultiwayJoin [5] Shares HypherCube Myria / Java N / A

BiGJoin [6] WOptJoin Timely / Rust Batching, specific Triangle Indexing

CrystalJoin [7] Others Hadoop / Java Compression



Our Contributions

A practical guide

A practical guide for 
distributed subgraph 
matching based on 
empirical analysis 
covering the 
perspectives of join 
strategies,optimizations 
and join plans.

In-depth Experiments

A complete variations of 
data graphs, query 
graphs, strategies and 
optimizations

All Optimizations

Three general-purpose 
optimizations - 
Batching, TrIndexing 
and Compression - to 
apply to all strategies 
while possible

A Common System

A benchmarking 
platform based on 
Timely dataflow system 
for distributed subgraph 
matching.



Timely Dataflow System
● A general-purpose data-parallel distributed dataflow system [10]
● Computation is abstracted as dataflow graph

○ DAG, but allowing loops in the loop context
○ Operators are vertices that define computing logics
○ Data flows are directed edges that chain operators

● Reasons of using Timely dataflow
○ Small system cost [11]: the impact of system can be reduced to minimum
○ Low-level primitive operators: flexible enough to implement all benchmarking algorithms



Literature Survey



Categorizing by Strategies



BinaryJoin Strategy
● Divide the pattern graph into a set of join units { p1, p2, …, pk }
● Process k-1 binary joins following specific join order

● We prove that CliqueJoin is worst-case optimal by showing that it can be 
expressed as GenericJoin proposed by Ngo et al. [8]



StarJoin Algorithm
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TwinTwigJoin Algorithm
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CliqueJoin Algorithm
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WOptJoin
● BinaryJoin: “growing by graphs (i.e. join units)”
● WOptJoin: “growing by vertices” [6]

○ Given a vertex order {v1, v2, …, vn}
○ Start by matching v1, then {v1, v2} and so on until constructing the final results
○ BiGJoin follows this strategy, and is implemented on Timely dataflow
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BiGJoin Algorithm
● Based on Ngo’s worst-case optimal join algorithm [8]
● Concepts:

○ Prefix: the current partial results
○ Prefix*: the projection of Prefix on the vertices that are connecting current vertex in the pattern graph

● Three operators on Timely Dataflow
○ Count: Count # neighbors of each vertex in the prefix*
○ Propose: Attach the neighbors that are the smallest among the prefix*’s vertices
○ Intersect: Process set intersection among the neighbors of all associated vertices



BiGJoin Algorithm

v1 v3

u1 u2

u2 u3

...

Prefix

Count: 

Propose: 

Intersect: 

Next Prefix: 

Prefix = Prefix*
as v4 connecting both v1 and v3

// count # neighbors

// Propose on the one with smallest number of neighbors

// Intersect with the other vertices’ neighbors

//  Flatmap to get the next partial results w.r.t Prefix



Shares of Hypercube
● Given a pattern graph of n vertices, the searching space forms an 

n-dimensional hypercube
○

● The idea of sharing
○ Divide V into b shares                          , where 
○ The machine indiced by                                where                   ,  handles of the share of

● MultiwayJoin Algorithm (details in the paper)



Optimizations
● Three general-purpose optimizations

○ Batching 
○ Triangle Indexing
○ Compression (Factorization)

● Methodologies
○ We apply all optimizations to both BinaryJoin and WOptJoin strategies
○ Focus on strategy-level comparison in order to see what cause the performance gains, 

strategies or optimizations
○ Hand-written optimizations are excluded



Details of Compression
● Originally proposed by Qiao et al. [7]
● Intuition

○ Subgraph enumeration can generate enormous (intermediate) results 
○ Some vertices can be compressed as they are not needed in future computation

■ Heuristics by [7]: the vertices that do not belong to the minimum vertex cover (MVC)



Details of Compression
● Originally proposed by Qiao et al. [7]
● Intuition

○ Subgraph enumeration can generate enormous (intermediate) results 
○ Some vertices can be compressed as they are not needed in future computation

■ Heuristics by [7]: the vertices that do not belong to the minimum vertex cover (MVC)

v0

v1 v2

v3

Vertices to compress

Vertices in MVC



Details of Compression
● Originally proposed by Qiao et al. [7]
● Intuition

○ Subgraph enumeration can generate enormous (intermediate) results 
○ Some vertices can be compressed as they are not needed in future computation

■ Heuristics by [7]: the vertices that do not belong to the minimum vertex cover (MVC)

v0

v1 v2

v3

Vertices to compress

Vertices in MVC
Decompose into results



Experiment Results & Observations



Experiment Settings
● Local Cluster: 10 machines connected via one 10GBps switch and one 

1GBps switch. Each machine has 4 cores and 64GB memory
● Metrics

○ T: The slowest worker’s wall clock time. 
■ 3 hours maximum, OT if running out of time
■ Tp, computation time: timing all computation-related functions, and take the slowest 

among the workers
■ Tc, communication time: Tc = T - Tp



Effects of Optimizations

O
O
M

BinaryJoin WOptJoin

LJ dataset: 4.85M vertices, 43.37M edges



Observations
● Batching

○ Batching greatly reduces memory consumption, but barely affects performance

● Triangle Indexing
○ By average it takes 5 times more storage to index triangles on the studied datasets
○ It has critical impact for BinaryJoin
○ It is effective for WOptJoin when the network is slow (1GBps), but less so when it is fast

● Compression
○ Compression may introduce more cost than gains on very-sparse graphs like road 

network

● All optimizations are applied for BinarayJoin and WOptJoin in the following



Challenging Queries

USRoad Google

Google dataset: 0.86M vertices, 4.32M edgesUSRoad dataset: 23.95M vertices, 28.85M edges



Observations
● The cost-based “optimal” join plan given by CliqueJoin [4] does not always 

render the best performance

“Optimal” plan Alternative plan with 
better performance

○ e.g., “Tailed triangle” (TR) vs “House” (H)
○ In theory, TR has lower estimated cost 

[4], and lower worst-case bound [8] than 
H

○ In practice, TR is as costly as H, and 
joining two TRs in the “optimal” plan 
makes it worse



Observations
● The heuristics of Crystaljoin

○ MVC-first + compress the remaining
○ It guarantees the best compression [7], but prioritizing computing MVC can be costly
○ e.g. 

■ Note that we use connected “MVC” [9] instead of actual MVC
■ The “MVC”-first plan is very expensive as “MVC” is a costly 5-path

○ When it produces strictly larger compression



Observations
● The case that Crystaljoin indeed performs better

○ When it produces strictly larger compression
○ e.g. 

■ Crystaljoin’s plan now compresses three vertices
■ BiGJoin (when applying compression), can only compress two vertices

CrystalJoinBiGJoin



All-around Comparisons
● 6 Queries

○

● 5 Datasets
○ Varieties of types: Web Graph, social networks and road networks  
○ Varieties of sizes: 12M edges ~ 1806M edges
○ Varieties of densities (avg degree): 4 ~ 218 

● 4 Strategies
○ BinaryJoin, WOptJoin, Shares of HyperCube (SHRCube), FullRep



All-around Comparisons Tc: shadowed fillings of the bars

Tp: white fillings of the bars



Observations
● FullRep typically outperforms the other strategies
● Computation time Tp dominates in most cases

○ Observed in the 10Gbps network
○ Communication time dominates in the slower network (1Gbps)
○ The distributed subgraph matching tends to be computation-intensive



A Practical Guide





Q & A

Working on open-sourcing, bins available for verifying the results:
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