
HGMatch: A Match-by-Hyperedge

Approach for Subgraph Matching on

Hypergraphs
Zhengyi Yang1, Wenjie Zhang1, Xuemin Lin2, Ying Zhang3, Shunyang Li1

1 University of New South Wales, 2Shanghai Jiao Tong University, 3University of

Technology Sydney

Graphs vs Hypergraphs

Graph Hypergraph

2

Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph

3

Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph

4

Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph

5

Applications

• Mining Biological Networks

• e.g., protein interactions, gene interactions

• Querying Hypergraph Databases

• e.g., AtomSpace, HyperGraphDB, TypeDB

• Pattern Learning in NLP

• e.g., semantic hypergraphs (each word is a vertex, and each sentence is a hyperedge)

• Q/A over Hypergraph Knowledge Base

• e.g., JF17K dataset (a subset of non-binary relations extracted from Freebase)

6

Example Queries for JF17K Dataset

Which football players represented

different teams in different matches?

Which actors played the same

character in a TV show on different

seasons?

7

Strawman Approach

• Convert the hypergraph to a bipartite graph and apply existing subgraph

matching algorithms

• by taking the incidence matrix and treating this as the incidence matrix of a bipartite graph

• Directly extend existing subgraph matching algorithms to the case of

hypergraphs

• recursively expand the partial embedding vertex-by-vertex by mapping a query vertex to a

data vertex following a given matching order and backtrack when necessary

8

Motivations

1. The match-by-vertex approach in the strawman approaches generally

underutilise high-order information in hypergraphs

• hyperedges are used as a verification condition in the match-by-vertex framework, which can lead

to a huge search space and large enumeration cost

2. It is difficult to compute subgraph matching on massive hypergraphs using

sequential algorithms

• none of the existing subhypergraph matching algorithms supports parallel execution

9

Contributions

1. A match-by-hyperedge framework

• Match the query by hyperedges instead of vertices

• Use set operations to efficiently generate candidates

• Filter out false positives with set comparison

2. A highly optimised parallel execution engine

• Adopt the dataflow model for parallelisation

• Bounded memory consumption with our task-based scheduler

• Load balancing with dynamic work-stealing

10

HGMatch Overview

11

Hypergraph Data Layout

• Hypergraphs are stored as hyperedge tables with inverted hyperedge index

• Hyperedge Signature: a multiset of all vertex labels contained in a hyperedge

Hyperedges

Inverted

Hyperedge

Index

Hyperedge

Signature

12

Match-by-Hyperedge Framework

Suppose partial result 𝑚 = (𝑒1, 𝑒3), we want to

match {𝑢0, 𝑢1, 𝑢3, 𝑢4} the next data hyperedge 𝑒.

13

Match-by-Hyperedge Framework

Suppose partial result 𝑚 = (𝑒1, 𝑒3), we want to

match {𝑢0, 𝑢1, 𝑢3, 𝑢4} the next data hyperedge 𝑒.

• e must have the same signature with the

query hyperedge

14

Match-by-Hyperedge Framework

Suppose partial result 𝑚 = (𝑒1, 𝑒3), we want to

match {𝑢0, 𝑢1, 𝑢3, 𝑢4} the next data hyperedge 𝑒.

• e must have the same signature with the

query hyperedge

• 𝑒 must be incident to 𝑣4 ∈ 𝑒1 and 𝑣0, 𝑣1 ∈ 𝑒3

15

Match-by-Hyperedge Framework

Suppose partial result 𝑚 = (𝑒1, 𝑒3), we want to

match {𝑢0, 𝑢1, 𝑢3, 𝑢4} the next data hyperedge 𝑒.

• e must have the same signature with the

query hyperedge

• 𝑒 must be incident to 𝑣4 ∈ 𝑒1 and 𝑣0, 𝑣1 ∈ 𝑒3

⟹ 𝐶 𝑒 = 𝑒5 ∩ 𝑒5 ∩ 𝑒5, 𝑒6 = 𝑒5

16

Parallel Execution

• Dataflow Model

• We designed three operators: SCAN, EXPAND, SINK

• Task-based Scheduler

• Computation are broken down into tasks and

scheduled in LIFO order to bound memory

• Dynamic Work Stealing

• Idle worker will steal tasks from others for load

balancing

SCAN({u
2
,u

4
})

EXPAND1({u
0
,u

1
,u

2
})

EXPAND2({u
0
,u

1
,u

3
,u

4
})

SINK

M = {(e
1
), (e2)}

M = {(e1, e3
),

(e2, e4)}

M = {(e1, e3 , e5),

(e2, e4, e6)}

1.TSCAN

2.TEXPAND1<- (e
1
) 5.TEXPAND1

<- (e
2
)

3.TEXPAND2<- (e
1
, e

3
) 6.TEXPAND2<- (e

1
, e

3
)

4.TSINK<- (e
1
, e3 , e5

) 7.TSINK<- (e
2
, e

4
, e

6
)

Example Dataflow Graph and Task Tree

17

Experimental Setup

• Hardware: a server with two 20-core Xeon E5-2698 V4 CPU and 512G of

memory

• Baselines: we propose a generic framework to extend existing subgraph

matching algorithms to the case of hypergraphs

• We compared the extended version of CFL (SIGMOD16), DAF (SIGMOD19), CECI

(SIGMOD19), and RapidMatch (VLDB20)

• Queries: randomly sample subhypergraphs from the data hypergraphs with

given number of hyperedges and vertices

18

Datasets

• Datasets: we use 10 real-world hypergraphs as data hypergraphs

19

Index Building

Building Time and Size of Index

20

Single-thread Comparisons

Execution Time for each Query Set
21

Parallel Comparisons

Vary Number of Threads Task-based Scheduling

Work Stealing

22

Thank you!

	Slide 1: HGMatch: A Match-by-Hyperedge Approach for Subgraph Matching on Hypergraphs
	Slide 2: Graphs vs Hypergraphs
	Slide 3: Subgraph Matching on Hypergraphs
	Slide 4: Subgraph Matching on Hypergraphs
	Slide 5: Subgraph Matching on Hypergraphs
	Slide 6: Applications
	Slide 7: Example Queries for JF17K Dataset
	Slide 8: Strawman Approach
	Slide 9: Motivations
	Slide 10: Contributions
	Slide 11: HGMatch Overview
	Slide 12: Hypergraph Data Layout
	Slide 13: Match-by-Hyperedge Framework
	Slide 14: Match-by-Hyperedge Framework
	Slide 15: Match-by-Hyperedge Framework
	Slide 16: Match-by-Hyperedge Framework
	Slide 17: Parallel Execution
	Slide 18: Experimental Setup
	Slide 19: Datasets
	Slide 20: Index Building
	Slide 21: Single-thread Comparisons
	Slide 22: Parallel Comparisons
	Slide 23: Thank you!

